Math Symbols

HTML Math Symbols, Math Entities and Math Unicode Symbols

Math Symbols

SymbolHTML CodeHTML EntityUnicodeCSS CodeHex CodeDescription
+++U+0002B\002B+Plus Sign
−−U+02212\2212−Minus Sign
×××U+000D7\00D7×Multiplication Sign
÷÷÷ ÷U+000F7\00F7÷Division Sign
===U+0003D\003D=Equals Sign
≠≠ ≠U+02260\2260≠Not Equal To
±±± ± ±U+000B1\00B1±Plus-minus Sign
¬¬¬U+000AC\00AC¬Not Sign
<&#60;&lt; &LT;U+0003C\003C&#x3C;Less-than Sign
>&#62;&gt; &GT;U+0003E\003E&#x3E;Greater-than Sign
&#8924;U+022DC\22DC&#x22DC;Equal To Or Less-than
&#8925;U+022DD\22DD&#x22DD;Equal To Or Greater-than
°&#176;&deg;U+000B0\00B0&#xB0;Degree Sign
¹&#185;&sup1;U+000B9\00B9&#xB9;Superscript One
²&#178;&sup2;U+000B2\00B2&#xB2;Superscript Two
³&#179;&sup3;U+000B3\00B3&#xB3;Superscript Three
ƒ&#402;&fnof;U+00192\0192&#x192;Latin Small Letter F With Hook
%&#37;&percnt;U+00025\0025&#x25;Percent Sign
‰&#137;U+00089\0089&#x89;
&#8241;&pertenk;U+02031\2031&#x2031;Per Ten Thousand Sign
&#8704;&forall; &ForAll;U+02200\2200&#x2200;For All
&#8705;&comp; &complement;U+02201\2201&#x2201;Complement
&#8706;&part; &PartialD;U+02202\2202&#x2202;Partial Differential
&#8707;&exist; &Exists;U+02203\2203&#x2203;There Exists
&#8708;&nexist; &NotExists; &nexists;U+02204\2204&#x2204;There Does Not Exist
&#8709;&empty; &emptyset; &emptyv; &varnothing;U+02205\2205&#x2205;Empty Set
&#8710;U+02206\2206&#x2206;Increment
&#8711;&nabla; &Del;U+02207\2207&#x2207;Nabla
&#8712;&isin; &isinv; &Element; &in;U+02208\2208&#x2208;Element Of
&#8713;&notin; &NotElement; &notinva;U+02209\2209&#x2209;Not An Element Of
&#8714;U+0220A\220A&#x220A;Small Element Of
&#8715;&niv; &ReverseElement; &ni; &SuchThat;U+0220B\220B&#x220B;Contains As Member
&#8716;&notni; &notniva; &NotReverseElement;U+0220C\220C&#x220C;Does Not Contain As Member
&#8717;U+0220D\220D&#x220D;Small Contains As Member
&#8718;U+0220E\220E&#x220E;End Of Proof
&#8719;&prod; &Product;U+0220F\220F&#x220F;N-ary Product
&#8720;&coprod; &Coproduct;U+02210\2210&#x2210;N-ary Coproduct
&#8721;&sum; &Sum;U+02211\2211&#x2211;N-ary Summation
&#8723;&mnplus; &mp; &MinusPlus;U+02213\2213&#x2213;Minus-or-plus Sign
&#8724;&plusdo; &dotplus;U+02214\2214&#x2214;Dot Plus
&#8725;U+02215\2215&#x2215;Division Slash
&#8726;&setmn; &setminus; &Backslash; &ssetmn; &smallsetminus;U+02216\2216&#x2216;Set Minus
&#8727;&lowast;U+02217\2217&#x2217;Asterisk Operator
&#8728;&compfn; &SmallCircle;U+02218\2218&#x2218;Ring Operator
&#8729;U+02219\2219&#x2219;Bullet Operator
&#8730;&radic; &Sqrt;U+0221A\221A&#x221A;Square Root
&#8731;U+0221B\221B&#x221B;Cube Root
&#8732;U+0221C\221C&#x221C;Fourth Root
&#8733;&prop; &propto; &Proportional; &vprop; &varpropto;U+0221D\221D&#x221D;Proportional To
&#8734;&infin;U+0221E\221E&#x221E;Infinity
&#8735;&angrt;U+0221F\221F&#x221F;Right Angle
&#8736;&ang; &angle;U+02220\2220&#x2220;Angle
&#8737;&angmsd; &measuredangle;U+02221\2221&#x2221;Measured Angle
&#8738;&angsph;U+02222\2222&#x2222;Spherical Angle
&#8739;&mid; &VerticalBar; &smid; &shortmid;U+02223\2223&#x2223;Divides
&#8740;&nmid; &NotVerticalBar; &nsmid; &nshortmid;U+02224\2224&#x2224;Does Not Divide
&#8741;&par; &parallel; &DoubleVerticalBar; &spar; &shortparallel;U+02225\2225&#x2225;Parallel To
&#8742;&npar; &nparallel; &NotDoubleVerticalBar; &nspar; &nshortparallel;U+02226\2226&#x2226;Not Parallel To
&#8743;&and; &wedge;U+02227\2227&#x2227;Logical And
&#8744;&or; &vee;U+02228\2228&#x2228;Logical Or
&#8745;&cap;U+02229\2229&#x2229;Intersection
&#8746;&cup;U+0222A\222A&#x222A;Union
&#8747;&int; &Integral;U+0222B\222B&#x222B;Integral
&#8748;&Int;U+0222C\222C&#x222C;Double Integral
&#8749;&tint; &iiint;U+0222D\222D&#x222D;Triple Integral
&#8750;&conint; &oint; &ContourIntegral;U+0222E\222E&#x222E;Contour Integral
&#8751;&Conint; &DoubleContourIntegral;U+0222F\222F&#x222F;Surface Integral
&#8752;&Cconint;U+02230\2230&#x2230;Volume Integral
&#8753;&cwint;U+02231\2231&#x2231;Clockwise Integral
&#8754;&cwconint; &ClockwiseContourIntegral;U+02232\2232&#x2232;Clockwise Contour Integral
&#8755;&awconint; &CounterClockwiseContourIntegral;U+02233\2233&#x2233;Anticlockwise Contour Integral
&#8756;&there4; &therefore; &Therefore;U+02234\2234&#x2234;Therefore
&#8757;&becaus; &because; &Because;U+02235\2235&#x2235;Because
&#8758;&ratio;U+02236\2236&#x2236;Ratio
&#8759;&Colon; &Proportion;U+02237\2237&#x2237;Proportion
&#8760;&minusd; &dotminus;U+02238\2238&#x2238;Dot Minus
&#8761;U+02239\2239&#x2239;Excess
&#8762;&mDDot;U+0223A\223A&#x223A;Geometric Proportion
&#8763;&homtht;U+0223B\223B&#x223B;Homothetic
&#8764;&sim; &Tilde; &thksim; &thicksim;U+0223C\223C&#x223C;Tilde Operator
&#8765;&bsim; &backsim;U+0223D\223D&#x223D;Reversed Tilde
&#8766;&ac; &mstpos;U+0223E\223E&#x223E;Inverted Lazy S
&#8767;&acd;U+0223F\223F&#x223F;Sine Wave
&#8768;&wreath; &VerticalTilde; &wr;U+02240\2240&#x2240;Wreath Product
&#8769;&nsim; &NotTilde;U+02241\2241&#x2241;Not Tilde
&#8770;&esim; &EqualTilde; &eqsim;U+02242\2242&#x2242;Minus Tilde
&#8771;&sime; &TildeEqual; &simeq;U+02243\2243&#x2243;Asymptotically Equal To
&#8772;&nsime; &nsimeq; &NotTildeEqual;U+02244\2244&#x2244;Not Asymptotically Equal To
&#8773;&cong; &TildeFullEqual;U+02245\2245&#x2245;Approximately Equal To
&#8774;&simne;U+02246\2246&#x2246;Approximately But Not Actually Equal To
&#8775;&ncong; &NotTildeFullEqual;U+02247\2247&#x2247;Neither Approximately Nor Actually Equal To
&#8776;&asymp; &ap; &TildeTilde; &approx; &thkap; &thickapprox;U+02248\2248&#x2248;Almost Equal To
&#8777;&nap; &NotTildeTilde; &napprox;U+02249\2249&#x2249;Not Almost Equal To
&#8778;&ape; &approxeq;U+0224A\224A&#x224A;Almost Equal Or Equal To
&#8779;&apid;U+0224B\224B&#x224B;Triple Tilde
&#8780;&bcong; &backcong;U+0224C\224C&#x224C;All Equal To
&#8781;&asympeq; &CupCap;U+0224D\224D&#x224D;Equivalent To
&#8782;&bump; &HumpDownHump; &Bumpeq;U+0224E\224E&#x224E;Geometrically Equivalent To
&#8783;&bumpe; &HumpEqual; &bumpeq;U+0224F\224F&#x224F;Difference Between
&#8784;&esdot; &DotEqual; &doteq;U+02250\2250&#x2250;Approaches The Limit
&#8785;&eDot; &doteqdot;U+02251\2251&#x2251;Geometrically Equal To
&#8786;&efDot; &fallingdotseq;U+02252\2252&#x2252;Approximately Equal To Or The Image Of
&#8787;&erDot; &risingdotseq;U+02253\2253&#x2253;Image Of Or Approximately Equal To
&#8788;&colone; &coloneq; &Assign;U+02254\2254&#x2254;Colon Equals
&#8789;&ecolon; &eqcolon;U+02255\2255&#x2255;Equals Colon
&#8790;&ecir; &eqcirc;U+02256\2256&#x2256;Ring In Equal To
&#8791;&cire; &circeq;U+02257\2257&#x2257;Ring Equal To
&#8792;U+02258\2258&#x2258;Corresponds To
&#8793;&wedgeq;U+02259\2259&#x2259;Estimates
&#8794;&veeeq;U+0225A\225A&#x225A;Equiangular To
&#8795;U+0225B\225B&#x225B;Star Equals
&#8796;&trie; &triangleq;U+0225C\225C&#x225C;Delta Equal To
&#8797;U+0225D\225D&#x225D;Equal To By Definition
&#8798;U+0225E\225E&#x225E;Measured By
&#8799;&equest; &questeq;U+0225F\225F&#x225F;Questioned Equal To
&#8801;&equiv; &Congruent;U+02261\2261&#x2261;Identical To
&#8802;&nequiv; &NotCongruent;U+02262\2262&#x2262;Not Identical To
&#8803;U+02263\2263&#x2263;Strictly Equivalent To
&#8804;&le; &leq;U+02264\2264&#x2264;Less-than Or Equal To
&#8805;&ge; &GreaterEqual; &geq;U+02265\2265&#x2265;Greater-than Or Equal To
&#8806;&lE; &LessFullEqual; &leqq;U+02266\2266&#x2266;Less-than Over Equal To
&#8807;&gE; &GreaterFullEqual; &geqq;U+02267\2267&#x2267;Greater-than Over Equal To
&#8808;&lnE; &lneqq;U+02268\2268&#x2268;Less-than But Not Equal To
&#8809;&gnE; &gneqq;U+02269\2269&#x2269;Greater-than But Not Equal To
&#8810;&Lt; &NestedLessLess; &ll;U+0226A\226A&#x226A;Much Less-than
&#8811;&Gt; &NestedGreaterGreater; &gg;U+0226B\226B&#x226B;Much Greater-than
&#8812;&twixt; &between;U+0226C\226C&#x226C;Between
&#8813;&NotCupCap;U+0226D\226D&#x226D;Not Equivalent To
&#8814;&nlt; &NotLess; &nless;U+0226E\226E&#x226E;Not Less-than
&#8815;&ngt; &NotGreater; &ngtr;U+0226F\226F&#x226F;Not Greater-than
&#8816;&nle; &NotLessEqual; &nleq;U+02270\2270&#x2270;Neither Less-than Nor Equal To
&#8817;&nge; &NotGreaterEqual; &ngeq;U+02271\2271&#x2271;Neither Greater-than Nor Equal To
&#8818;&lsim; &LessTilde; &lesssim;U+02272\2272&#x2272;Less-than Or Equivalent To
&#8819;&gsim; &gtrsim; &GreaterTilde;U+02273\2273&#x2273;Greater-than Or Equivalent To
&#8820;&nlsim; &NotLessTilde;U+02274\2274&#x2274;Neither Less-than Nor Equivalent To
&#8821;&ngsim; &NotGreaterTilde;U+02275\2275&#x2275;Neither Greater-than Nor Equivalent To
&#8822;&lg; &lessgtr; &LessGreater;U+02276\2276&#x2276;Less-than Or Greater-than
&#8823;&gl; &gtrless; &GreaterLess;U+02277\2277&#x2277;Greater-than Or Less-than
&#8824;&ntlg; &NotLessGreater;U+02278\2278&#x2278;Neither Less-than Nor Greater-than
&#8825;&ntgl; &NotGreaterLess;U+02279\2279&#x2279;Neither Greater-than Nor Less-than
&#8826;&pr; &Precedes; &prec;U+0227A\227A&#x227A;Precedes
&#8827;&sc; &Succeeds; &succ;U+0227B\227B&#x227B;Succeeds
&#8828;&prcue; &PrecedesSlantEqual; &preccurlyeq;U+0227C\227C&#x227C;Precedes Or Equal To
&#8829;&sccue; &SucceedsSlantEqual; &succcurlyeq;U+0227D\227D&#x227D;Succeeds Or Equal To
&#8830;&prsim; &precsim; &PrecedesTilde;U+0227E\227E&#x227E;Precedes Or Equivalent To
&#8831;&scsim; &succsim; &SucceedsTilde;U+0227F\227F&#x227F;Succeeds Or Equivalent To
&#8832;&npr; &nprec; &NotPrecedes;U+02280\2280&#x2280;Does Not Precede
&#8833;&nsc; &nsucc; &NotSucceeds;U+02281\2281&#x2281;Does Not Succeed
&#8834;&sub; &subset;U+02282\2282&#x2282;Subset Of
&#8835;&sup; &supset; &Superset;U+02283\2283&#x2283;Superset Of
&#8836;&nsub;U+02284\2284&#x2284;Not A Subset Of
&#8837;&nsup;U+02285\2285&#x2285;Not A Superset Of
&#8838;&sube; &SubsetEqual; &subseteq;U+02286\2286&#x2286;Subset Of Or Equal To
&#8839;&supe; &supseteq; &SupersetEqual;U+02287\2287&#x2287;Superset Of Or Equal To
&#8840;&nsube; &nsubseteq; &NotSubsetEqual;U+02288\2288&#x2288;Neither A Subset Of Nor Equal To
&#8841;&nsupe; &nsupseteq; &NotSupersetEqual;U+02289\2289&#x2289;Neither A Superset Of Nor Equal To
&#8842;&subne; &subsetneq;U+0228A\228A&#x228A;Subset Of With Not Equal To
&#8843;&supne; &supsetneq;U+0228B\228B&#x228B;Superset Of With Not Equal To
&#8844;U+0228C\228C&#x228C;Multiset
&#8845;&cupdot;U+0228D\228D&#x228D;Multiset Multiplication
&#8846;&uplus; &UnionPlus;U+0228E\228E&#x228E;Multiset Union
&#8847;&sqsub; &SquareSubset; &sqsubset;U+0228F\228F&#x228F;Square Image Of
&#8848;&sqsup; &SquareSuperset; &sqsupset;U+02290\2290&#x2290;Square Original Of
&#8849;&sqsube; &SquareSubsetEqual; &sqsubseteq;U+02291\2291&#x2291;Square Image Of Or Equal To
&#8850;&sqsupe; &SquareSupersetEqual; &sqsupseteq;U+02292\2292&#x2292;Square Original Of Or Equal To
&#8851;&sqcap; &SquareIntersection;U+02293\2293&#x2293;Square Cap
&#8852;&sqcup; &SquareUnion;U+02294\2294&#x2294;Square Cup
&#8853;&oplus; &CirclePlus;U+02295\2295&#x2295;Circled Plus
&#8854;&ominus; &CircleMinus;U+02296\2296&#x2296;Circled Minus
&#8855;&otimes; &CircleTimes;U+02297\2297&#x2297;Circled Times
&#8856;&osol;U+02298\2298&#x2298;Circled Division Slash
&#8857;&odot; &CircleDot;U+02299\2299&#x2299;Circled Dot Operator
&#8858;&ocir; &circledcirc;U+0229A\229A&#x229A;Circled Ring Operator
&#8859;&oast; &circledast;U+0229B\229B&#x229B;Circled Asterisk Operator
&#8860;U+0229C\229C&#x229C;Circled Equals
&#8861;&odash; &circleddash;U+0229D\229D&#x229D;Circled Dash
&#8862;&plusb; &boxplus;U+0229E\229E&#x229E;Squared Plus
&#8863;&minusb; &boxminus;U+0229F\229F&#x229F;Squared Minus
&#8864;&timesb; &boxtimes;U+022A0\22A0&#x22A0;Squared Times
&#8865;&sdotb; &dotsquare;U+022A1\22A1&#x22A1;Squared Dot Operator
&#8866;&vdash; &RightTee;U+022A2\22A2&#x22A2;Right Tack
&#8867;&dashv; &LeftTee;U+022A3\22A3&#x22A3;Left Tack
&#8868;&top; &DownTee;U+022A4\22A4&#x22A4;Down Tack
&#8869;&bottom; &bot; &perp; &UpTee;U+022A5\22A5&#x22A5;Up Tack
&#8870;U+022A6\22A6&#x22A6;Assertion
&#8871;&models;U+022A7\22A7&#x22A7;Models
&#8872;&vDash; &DoubleRightTee;U+022A8\22A8&#x22A8;True
&#8873;&Vdash;U+022A9\22A9&#x22A9;Forces
&#8874;&Vvdash;U+022AA\22AA&#x22AA;Triple Vertical Bar Right Turnstile
&#8875;&VDash;U+022AB\22AB&#x22AB;Double Vertical Bar Double Right Turnstile
&#8876;&nvdash;U+022AC\22AC&#x22AC;Does Not Prove
&#8877;&nvDash;U+022AD\22AD&#x22AD;Not True
&#8878;&nVdash;U+022AE\22AE&#x22AE;Does Not Force
&#8879;&nVDash;U+022AF\22AF&#x22AF;Negated Double Vertical Bar Double Right Turnstile
&#8880;&prurel;U+022B0\22B0&#x22B0;Precedes Under Relation
&#8881;U+022B1\22B1&#x22B1;Succeeds Under Relation
&#8882;&vltri; &vartriangleleft; &LeftTriangle;U+022B2\22B2&#x22B2;Normal Subgroup Of
&#8883;&vrtri; &vartriangleright; &RightTriangle;U+022B3\22B3&#x22B3;Contains As Normal Subgroup
&#8884;&ltrie; &trianglelefteq; &LeftTriangleEqual;U+022B4\22B4&#x22B4;Normal Subgroup Of Or Equal To
&#8885;&rtrie; &trianglerighteq; &RightTriangleEqual;U+022B5\22B5&#x22B5;Contains As Normal Subgroup Or Equal To
&#8886;&origof;U+022B6\22B6&#x22B6;Original Of
&#8887;&imof;U+022B7\22B7&#x22B7;Image Of
&#8888;&mumap; &multimap;U+022B8\22B8&#x22B8;Multimap
&#8889;&hercon;U+022B9\22B9&#x22B9;Hermitian Conjugate Matrix
&#8890;&intcal; &intercal;U+022BA\22BA&#x22BA;Intercalate
&#8891;&veebar;U+022BB\22BB&#x22BB;Xor
&#8892;U+022BC\22BC&#x22BC;Nand
&#8893;&barvee;U+022BD\22BD&#x22BD;Nor
&#8894;&angrtvb;U+022BE\22BE&#x22BE;Right Angle With Arc
&#8895;&lrtri;U+022BF\22BF&#x22BF;Right Triangle
&#8896;&xwedge; &Wedge; &bigwedge;U+022C0\22C0&#x22C0;N-ary Logical And
&#8897;&xvee; &Vee; &bigvee;U+022C1\22C1&#x22C1;N-ary Logical Or
&#8898;&xcap; &Intersection; &bigcap;U+022C2\22C2&#x22C2;N-ary Intersection
&#8899;&xcup; &Union; &bigcup;U+022C3\22C3&#x22C3;N-ary Union
&#8900;&diam; &diamond; &Diamond;U+022C4\22C4&#x22C4;Diamond Operator
&#8901;&sdot;U+022C5\22C5&#x22C5;Dot Operator
&#8902;&sstarf; &Star;U+022C6\22C6&#x22C6;Star Operator
&#8903;&divonx; &divideontimes;U+022C7\22C7&#x22C7;Division Times
&#8904;&bowtie;U+022C8\22C8&#x22C8;Bowtie
&#8905;&ltimes;U+022C9\22C9&#x22C9;Left Normal Factor Semidirect Product
&#8906;&rtimes;U+022CA\22CA&#x22CA;Right Normal Factor Semidirect Product
&#8907;&lthree; &leftthreetimes;U+022CB\22CB&#x22CB;Left Semidirect Product
&#8908;&rthree; &rightthreetimes;U+022CC\22CC&#x22CC;Right Semidirect Product
&#8909;&bsime; &backsimeq;U+022CD\22CD&#x22CD;Reversed Tilde Equals
&#8910;&cuvee; &curlyvee;U+022CE\22CE&#x22CE;Curly Logical Or
&#8911;&cuwed; &curlywedge;U+022CF\22CF&#x22CF;Curly Logical And
&#8912;&Sub; &Subset;U+022D0\22D0&#x22D0;Double Subset
&#8913;&Sup; &Supset;U+022D1\22D1&#x22D1;Double Superset
&#8914;&Cap;U+022D2\22D2&#x22D2;Double Intersection
&#8915;&Cup;U+022D3\22D3&#x22D3;Double Union
&#8916;&fork; &pitchfork;U+022D4\22D4&#x22D4;Pitchfork
&#8917;&epar;U+022D5\22D5&#x22D5;Equal And Parallel To
&#8918;&ltdot; &lessdot;U+022D6\22D6&#x22D6;Less-than With Dot
&#8919;&gtdot; &gtrdot;U+022D7\22D7&#x22D7;Greater-than With Dot
&#8920;&Ll;U+022D8\22D8&#x22D8;Very Much Less-than
&#8921;&Gg; &ggg;U+022D9\22D9&#x22D9;Very Much Greater-than
&#8922;&leg; &LessEqualGreater; &lesseqgtr;U+022DA\22DA&#x22DA;Less-than Equal To Or Greater-than
&#8923;&gel; &gtreqless; &GreaterEqualLess;U+022DB\22DB&#x22DB;Greater-than Equal To Or Less-than
&#8926;&cuepr; &curlyeqprec;U+022DE\22DE&#x22DE;Equal To Or Precedes
&#8927;&cuesc; &curlyeqsucc;U+022DF\22DF&#x22DF;Equal To Or Succeeds
&#8928;&nprcue; &NotPrecedesSlantEqual;U+022E0\22E0&#x22E0;Does Not Precede Or Equal
&#8929;&nsccue; &NotSucceedsSlantEqual;U+022E1\22E1&#x22E1;Does Not Succeed Or Equal
&#8930;&nsqsube; &NotSquareSubsetEqual;U+022E2\22E2&#x22E2;Not Square Image Of Or Equal To
&#8931;&nsqsupe; &NotSquareSupersetEqual;U+022E3\22E3&#x22E3;Not Square Original Of Or Equal To
&#8932;U+022E4\22E4&#x22E4;Square Image Of Or Not Equal To
&#8933;U+022E5\22E5&#x22E5;Square Original Of Or Not Equal To
&#8934;&lnsim;U+022E6\22E6&#x22E6;Less-than But Not Equivalent To
&#8935;&gnsim;U+022E7\22E7&#x22E7;Greater-than But Not Equivalent To
&#8936;&prnsim; &precnsim;U+022E8\22E8&#x22E8;Precedes But Not Equivalent To
&#8937;&scnsim; &succnsim;U+022E9\22E9&#x22E9;Succeeds But Not Equivalent To
&#8938;&nltri; &ntriangleleft; &NotLeftTriangle;U+022EA\22EA&#x22EA;Not Normal Subgroup Of
&#8939;&nrtri; &ntriangleright; &NotRightTriangle;U+022EB\22EB&#x22EB;Does Not Contain As Normal Subgroup
&#8940;&nltrie; &ntrianglelefteq; &NotLeftTriangleEqual;U+022EC\22EC&#x22EC;Not Normal Subgroup Of Or Equal To
&#8941;&nrtrie; &ntrianglerighteq; &NotRightTriangleEqual;U+022ED\22ED&#x22ED;Does Not Contain As Normal Subgroup Or Equal
&#8942;&vellip;U+022EE\22EE&#x22EE;Vertical Ellipsis
&#8943;&ctdot;U+022EF\22EF&#x22EF;Midline Horizontal Ellipsis
&#8944;&utdot;U+022F0\22F0&#x22F0;Up Right Diagonal Ellipsis
&#8945;&dtdot;U+022F1\22F1&#x22F1;Down Right Diagonal Ellipsis
&#8946;&disin;U+022F2\22F2&#x22F2;Element Of With Long Horizontal Stroke
&#8947;&isinsv;U+022F3\22F3&#x22F3;Element Of With Vertical Bar At End Of Horizontal Stroke
&#8948;&isins;U+022F4\22F4&#x22F4;Small Element Of With Vertical Bar At End Of Horizontal Stroke
&#8949;&isindot;U+022F5\22F5&#x22F5;Element Of With Dot Above
&#8950;&notinvc;U+022F6\22F6&#x22F6;Element Of With Overbar
&#8951;&notinvb;U+022F7\22F7&#x22F7;Small Element Of With Overbar
&#8952;U+022F8\22F8&#x22F8;Element Of With Underbar
&#8953;&isinE;U+022F9\22F9&#x22F9;Element Of With Two Horizontal Strokes
&#8954;&nisd;U+022FA\22FA&#x22FA;Contains With Long Horizontal Stroke
&#8955;&xnis;U+022FB\22FB&#x22FB;Contains With Vertical Bar At End Of Horizontal Stroke
&#8956;&nis;U+022FC\22FC&#x22FC;Small Contains With Vertical Bar At End Of Horizontal Stroke
&#8957;&notnivc;U+022FD\22FD&#x22FD;Contains With Overbar
&#8958;&notnivb;U+022FE\22FE&#x22FE;Small Contains With Overbar
&#8959;U+022FF\22FF&#x22FF;Z Notation Bag Membership
&#8304;U+02070\2070&#x2070;Superscript Zero
&#8305;U+02071\2071&#x2071;Superscript Latin Small Letter I
&#8308;U+02074\2074&#x2074;Superscript Four
&#8309;U+02075\2075&#x2075;Superscript Five
&#8310;U+02076\2076&#x2076;Superscript Six
&#8311;U+02077\2077&#x2077;Superscript Seven
&#8312;U+02078\2078&#x2078;Superscript Eight
&#8313;U+02079\2079&#x2079;Superscript Nine
&#8314;U+0207A\207A&#x207A;Superscript Plus Sign
&#8315;U+0207B\207B&#x207B;Superscript Minus
&#8316;U+0207C\207C&#x207C;Superscript Equals Sign
&#8317;U+0207D\207D&#x207D;Superscript Left Parenthesis
&#8318;U+0207E\207E&#x207E;Superscript Right Parenthesis
&#8319;U+0207F\207F&#x207F;Superscript Latin Small Letter N
&#8320;U+02080\2080&#x2080;Subscript Zero
&#8321;U+02081\2081&#x2081;Subscript One
&#8322;U+02082\2082&#x2082;Subscript Two
&#8323;U+02083\2083&#x2083;Subscript Three
&#8324;U+02084\2084&#x2084;Subscript Four
&#8325;U+02085\2085&#x2085;Subscript Five
&#8326;U+02086\2086&#x2086;Subscript Six
&#8327;U+02087\2087&#x2087;Subscript Seven
&#8328;U+02088\2088&#x2088;Subscript Eight
&#8329;U+02089\2089&#x2089;Subscript Nine
&#8330;U+0208A\208A&#x208A;Subscript Plus Sign
&#8331;U+0208B\208B&#x208B;Subscript Minus
&#8332;U+0208C\208C&#x208C;Subscript Equals Sign
&#8333;U+0208D\208D&#x208D;Subscript Left Parenthesis
&#8334;U+0208E\208E&#x208E;Subscript Right Parenthesis
&#8336;U+02090\2090&#x2090;Latin Subscript Small Letter A
&#8337;U+02091\2091&#x2091;Latin Subscript Small Letter E
&#8338;U+02092\2092&#x2092;Latin Subscript Small Letter O
&#8339;U+02093\2093&#x2093;Latin Subscript Small Letter X
&#8340;U+02094\2094&#x2094;Latin Subscript Small Letter Schwa